A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex
نویسندگان
چکیده
We describe a quantitative theory to account for the computations performed by the feedforward path of the ventral stream of visual cortex and the local circuits implementing them. We show that a model instantiating the theory is capable of performing recognition on datasets of complex images at the level of human observers in rapid categorization tasks. We also show that the theory is consistent with (and in some case has predicted) several properties of neurons in V1, V4, IT and PFC. The theory seems sufficiently comprehensive, detailed and satisfactory to represent an interesting challenge for physiologists and modelers: either disprove its basic features or propose alternative theories of equivalent scope. The theory suggests a number of open questions for visual physiology and psychophysics. This version replaces the preliminary “Halloween” CBCL paper from Nov. 2005. This report describes research donewithin the Center for Biological & Computational Learning in the Department of Brain &Cognitive Sciences and in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. This research was sponsored by grants from: Office of Naval Research (DARPA) under contract No. N00014-00-1-0907, National Science Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI) under contract No. DMS-9872936, and National Science Foundation under contract No. IIS-9800032 Additional support was provided by: Central Research Institute of Electric Power Industry, Center for e-Business (MIT), Eastman Kodak Company, DaimlerChrysler AG, Compaq, Honda R&D Co., Ltd., Komatsu Ltd., Merrill-Lynch, NEC Fund, Nippon Telegraph & Telephone, Siemens Corporate Research, Inc., The Whitaker Foundation, and the SLOAN Foundations. 1To whom correspondence should be addressed. Email: [email protected]
منابع مشابه
Short-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملComputer Science and Artificial Intelligence Laboratory A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex
We describe a quantitative theory to account for the computations performed by the feedforward path of the ventral stream of visual cortex and the local circuits implementing them. We show that a model instantiating the theory is capable of performing recognition on datasets of complex images at the level of human observers in rapid categorization tasks. We also show that the theory is consiste...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملA quantitative theory of immediate visual recognition.
Human and non-human primates excel at visual recognition tasks. The primate visual system exhibits a strong degree of selectivity while at the same time being robust to changes in the input image. We have developed a quantitative theory to account for the computations performed by the feedforward path in the ventral stream of the primate visual cortex. Here we review recent predictions by a mod...
متن کاملA feedforward theory of visual cortex accounts for human performance in rapid categorization
2 Primates are remarkably good at recognizing objects in cluttered natural images. The level of performance of the primate visual system and its robustness to image variability have remained unchallenged by the best computer vision systems despite decades of engineering effort. We developed a new model of the feedforward path of the ventral stream in primate visual cortex that incorporates many...
متن کامل